广告

首页 >> 资讯 >> 热门资讯

科学家实现石墨烯纳米结构原子级精准的可控折叠 石墨烯主要运用在哪里? 石墨烯发展前景如何?

发布日期:2019-09-06  浏览次数:55

 随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,最先实现商业化应用的领域可能会是移动设备、航空航天、新能源电池领域。二维的石墨烯晶格结构被认为是其他众多的碳纳米结构的母体材料。目前在单原子层次上精准构筑和调控基于石墨烯的低维碳纳米结构仍存在巨大挑战。石墨烯纳米结构原子级精准的可控折叠意味着什么?是密西能应用在哪里?石墨烯发展前景怎样?

石墨烯(Graphene)是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。

石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。

实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。

科学家实现石墨烯纳米结构原子级精准的可控折叠

“折纸术”是一种把纸张折出各种特定形状和花样的艺术。在宏观尺度下,受折纸术的启发,科学家已经能够构建出石墨烯功能器件甚至机器模型。理论预测发现,在原子尺度,通过对石墨烯的弯曲折叠,可以构筑出具有新奇电子学特性的纳米结构。

最近,中国科学院院士、中国科学院物理研究所研究员高鸿钧团队的陈辉等人首次实现了对石墨烯纳米结构的原子级精准的可控折叠,构筑出一种新型的准三维石墨烯纳米结构。该结构由二维旋转堆垛双层石墨烯纳米结构与一维的类碳纳米管结构组成。他们通过扫描探针操控技术实现了:

(1)石墨烯纳米结构的原子级精准折叠与解折叠;

(2)同一个石墨烯结构沿任意方向的反复折叠;

(3)堆叠角度精确可调的旋转堆垛的双层石墨烯纳米结构;

(4)准一维碳纳米管纳米结构的构筑;

(5)双晶石墨烯纳米结构的可控折叠及其异质结的构筑。

石墨烯主要应用

随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,最先实现商业化应用的领域可能会是移动设备、航空航天、新能源电池领域。

基础研究

石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应可以通过实验经行验证。在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质--因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。

传感器

石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。 石墨烯独特的二维结构使它对周围的环境非常敏感。 石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。晶体管

石墨烯可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的尺度上依然能稳定地工作。相比之下,目前以硅为材料的晶体管在10纳米左右的尺度上就会失去稳定性;石墨烯中电子对外场的反应速度超快这一特点,又使得由它制成的晶体管可以达到极高的工作频率。例如IBM公司在2010年2月就已宣布将石墨烯晶体管的工作频率提高到了100GHz,超过同等尺度的硅晶体管。

柔性显示屏

消费电子展上可弯曲屏幕备受瞩目,成为未来移动设备显示屏的发展趋势。柔性显示未来市场广阔,作为基础材料的石墨烯前景也被看好。

新能源电池

新能源电池也是石墨烯最早商用的一大重要领域。美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。另外,石墨烯超级电池的成功研发,也解决了新能源汽车电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。

海水淡化

石墨烯过滤器比其他海水淡化技术要使用的多。水环境中的氧化石墨烯薄膜与水亲密接触后,可形成约0.9纳米宽的通道,小于这一尺寸的离子或分子可以快速通过。通过机械手段进一步压缩石墨烯薄膜中的毛细通道尺寸,控制孔径大小,能高效过滤海水中的盐分。

储氢材料

石墨烯具有质量轻、高化学稳定性和高比表面积等优点,使之成为储氢材料的最佳候选者。

航空航天

由于高导电性、高强度、超轻薄等特性,石墨烯在航天军工领域的应用优势也是极为突出的。2014年,美国NASA开发出应用于航天领域的石墨烯传感器,就能很好的对地球高空大气层的微量元素、航天器上的结构性缺陷等进行检测。而石墨烯在超轻型飞机材料等潜在应用上也将发挥更重要的作用。

感光元件

以石墨烯作为感光元件材质的新型感光元件,可望透过特殊结构,让感光能力比现有CMOS或CCD提高上千倍,而且损耗的能源也仅需原本10%。可应用在监视器与卫星成像领域中,可以应用于照相机、智能手机等。

复合材料

基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向, 其在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出了优良性能, 具有广阔的应用前景。

生物

石墨烯被用来加速人类骨髓间充质干细胞的成骨分化 ,同时也被用来制造碳化硅上外延石墨烯的生物传感器。同时石墨烯可以作为一个神经接口电极,而不会改变或破坏性能,如信号强度或疤痕组织的形成。

石墨烯发展前景

石墨烯的研究与应用开发持续升温,石墨和石墨烯有关的材料广泛应用在电池电极材料、半导体器件、透明显示屏、传感器、电容器、晶体管等方面。鉴于石墨烯材料优异的性能及其潜在的应用价值,在化学、材料、物理、生物、环境、能源等众多学科领域已取得了一系列重要进展。

研究者们致力于在不同领域尝试不同方法以求制备高质量、大面积石墨烯材料。并通过对石墨烯制备工艺的不断优化和改进,降低石墨烯制备成本使其优异的材料性能得到更广泛的应用,并逐步走向产业化。

中国在石墨烯研究上也具有独特的优势,从生产角度看,作为石墨烯生产原料的石墨,在我国储能丰富,价格低廉。正是看到了石墨烯的应用前景,许多国家纷纷建立石墨烯相关技术研发中心,尝试使用石墨烯商业化,进而在工业、技术和电子相关领域获得潜在的应用专利。